CERN PS/SL CONTROLS MIDDLEWARE , 4 June, 2002
SOFTWARE USER MANUAL

EUROPEAN LABORATORY FOR PARTICLE PHYSICS
CERN - PS/SL DIVISION

CERN PS/SL/??? ()

CERN PS/SL CONTROLS MIDDLEWARE (CMW)

software user manual

CMW/SUM/WORD/ISSUE 1/REVISION 0

The CERN PS and SL Controls Groups

Abstract:

This document is the User Manual for the PS/SL Controls Middleware (CMW) programming environment. It includes an overview of the programming models with code examples as well as the detailed description of all the facilities both for the users and the providers of services. It also contains a detailed description of naming and configuration facilities, instructions for linking and compiling and a list of the current limitations of CMW.
Document Status Sheet
	Document Status Sheet

	1. DOCUMENT TITLE: CERN PS/SL CONTROLS MIDDLEWARE

	2. DOCUMENT REFERENCE NUMBER: DIVISION

CERN PS/
/CMW/SUM

	3. ISSUE
	4. REVISION
	5. DATE
	6. REASON FOR CHANGE

	1
	0
	.../.../...
	First issue

document change record
	DOCUMENT CHANGE RECORD
	DCR NO

DATE

ORIGINATOR

APPROVED BY
	4/06/02

	1. DOCUMENT TITLE: CERN PS/SL CONTROLS MIDDLEWARE

	2. DOCUMENT REFERENCE NUMBER: DIVISION

CERN PS/
/CMW/SUM

	3. DOCUMENT ISSUE/REVISION NUMBER: 1/0

	4. PAGE
	5. PARAGRAPH
	6. REASON FOR CHANGE

	
	
	

31.
Introduction

1.1
intended readership
3
1.2
applicability statement
3
1.3
purpose
3
1.4
how to use this document
3
1.5
related documents
3
1.6
conventions
3
1.7
problem reporting instructions
3
2.
overview section
3
2.1
The Middleware data bus
3
2.2
THE DEVICE PROPERTY MODEL
3
2.3
The Topic model
3
2.4
the middleware application programming interface
3
2.5
The Data Model
3
3.
instruction section
3
3.1
Getting started (simple examples)
3
3.1.1
Device/Property model
3
3.1.2
Topic model
3
3.2
Working within the device/property model
Error! Bookmark not defined.
3.2.1
Data types
Error! Bookmark not defined.
3.2.2
Using devices as a client
Error! Bookmark not defined.
3.2.3
Providing devices as a server
3
3.3
Working with the topic model
3
3.3.1
Topic name space
3
3.3.2
Publishing on topics
3
3.3.3
Subscribing to topics
3
3.3.4
Working with different message types
3
3.3.5
The message selector
3
3.3.6
Working with notifications
3
3.4
Using naming Services.
3
3.4.1
How does it work.
3
3.4.2
Using PS and SL Devices.
3
3.5
Using Configuration Services
3
3.6
Configuration files and configuration parameters
3
3.7
Supported platforms
3
3.8
compiling and linking
3
3.9
Current Limitations
3
3.10
solving problems
3
3.11
FAQ
3
4.
reference section
3
1.
Introduction

1.1 intended readership

Describe who should read the SUM.

1.2 applicability statement

State which software release the SUM applies to.

1.3 purpose

Describe the purpose of the document.

Describe the purpose of the software.

1.4 how to use this document

Say how the document is intended to be read.

1.5 related documents

Describe the place of the SUM in the project documentation.

1.6 conventions

Describe any stylistic and command syntax conventions used.

1.7 problem reporting instructions

Summarise the SPR system for reporting problems.

2. overview section

Error! Not a valid link.
 Fig.1. The Midleware Client and Server APIs (Incomplete Signatures)

2.1 The Middleware data bus

As shown in Fig.1, the middleware data bus is the communication mechanism supported by PS/CO and SL/CO, which allows any software agent in the PS, SPS and LHCcontrol system, to consume and serve information.

The functionality provided by the middleware data bus is:

The support of an Object Oriented data model referred to as the “Device/Property model” (see description below) . This model allows Get/Set synchronous and asynchronous I/O operations on device properties to allow direct point-to-point client/server operations as well as “on demand” monitoring of device properties.

· The support of the publish/subscribe paradigm referred to as the “Topic model” (see following description). This model allows asynchronous and loosely coupled communications between servers “publishing” data when necessary and clients “subscribing” to data according to their needs.

· The naming service required in any distributed control system for resolving addresses and location of software agents present in the system (e.g. location of device servers)

The middleware API connects software agents to the middleware data bus. This programming interface has two parts :

· An interface allowing software agents to request information from other agents connected to the middleware. This part of the interface will now be referenced as the middleware client API

· An interface allowing software agents to serve information to other agents connected to the middleware. This second part will now be referenced as the middleware server API.

Three kinds of middleware software agents can be envisaged :

· Agents only requesting information form other agents. These agents will now be referenced as middleware clients.

· Agents only serving information to other agents. These agents will now be referenced a middleware servers.

· Agents both requesting and serving information. These agents will now be referenced as middleware client/servers.
2.2 THE DEVICE PROPERTY MODEL

Before describing the middleware API, it is necessary to say a few words about the Device/Property model.

The Device/Property model can be seen as an Object Oriented software representation of the devices composing an accelerator. The foundation of the Device/Property model is based on the idea that the equipment used to control an accelerator is made of named Devices (e.g. power converter, vacuum valve) having Properties (e.g. actual_state) and that all software interactions will consist in reading, writing or subscribing to the values of these properties. It is important to notice that the concept can be very easily applied to “virtual devices”, devices which do not have a direct hardware counterpart but may have a sense from a high operational point of view.

2.3 The Topic model

Enterprise messaging systems (or as they are sometimes called, Message Oriented Middleware systems) are becoming essential component for integrating intra-company operations. They allow separate business components to be combined into a reliable, yet flexible, solution. Messaging systems can be broadly classified as either point-to-point or publish-subscribe systems. Point-to-point (PTP) products are built around the concepts of message queues. Each message is addressed to a specific queue(s) estabilished to hold their messages. Publish and subscribe (Pub/Sub) clients address messages to some node in a content hierarchy. Publishers and subscribers are generally anonymous and decoupled and may dynamically publish or subscribe to the content hierarchy. The system takes care of distributing the messages arriving from a node's multiple publishers to its multiple subscribers.

The Topic model provides client interfaces tailored for the Pub/Sub domain. It defines how clients publish messages to, and subscribe to messages from a well known node in a content based hierarchy. We call these nodes topics. A topic can be thought of as a mini message broker that gathers and distributes messages addressed to it. A topic is defined and uniquely identified by its name, a string representing its path within a hierarchy. Any client interested in providing data can define itself a topic name and publish well defined messages to it. On the other hand, any client interested in receiving data being published on a known topic can simply subscribe to it using its name. The use of wildcards for subscriptions allows a client to fully exploit the hierarchical grouping of topics.

2.4 the middleware application programming interface

The accelerator middleware API has the following objectives :

· It isolates the software projects from any particular middeware technology (e.g. Object Request Broker, Message Oriented Middleware, or any other technology)

· It provides both a client API and a server API that software projects can use to request or serve information on the middleware data bus

As shown in Fig.1, the middleware client API has the following functionality:

· It offers synchronous and asynchronous Get() and Set() calls on Device Properties
· It offers publish/subscribe facility in two flavours:

· Monitoring (MonitorOn(), MonitorOff()) calls on Device Properties and on demand.
· Subscribe calls on “Topics”. This facility is similar to monitoring but is not restricted to the Device/Property data model and avoids coupling between the subscriber and the publisher. It is destinated to disseminate controls information around the controls network in such a way that there is only a loose coupling between publishers and subscribers and the number of clients can be potentially large. Typical usage of this facility is the distribution of Alarms, timing information, or state of the machine to tens or hundreds of software processes.

As shown in Fig.2, the middleware server API has the following functionality :

· It defines the Server Framework and rules to create middleware servers (called Device Adapters)

· It offers software “hooks” that Device Adapters can use to receive the incoming Get() and Set() requests from clients and to connect their specific code

· It offers the possibility to publish information to the middleware (push() call). The middleware will then distribute this information to any interested client.

· It provides polling mechanisms for equipment not capable of publishing information by their own. This can be associated with timing events.

· Publish calls on Topics (see the client API)

2.5 The Data Model

The middleware offers a very simple common data model. The device properties are objects of class Data. Every Data object can consist of one or more Data Entries. The Data Entries are objects which hold a value or array of values of primitive type. Each Data Entry of a Data object can be accessed by name and the values can be inserted or extracted in a type safe way and whenever the conversion between the programming type and the DataEntry type is possible. ?? The middleware offers also a limited support for conversion between user Java classes and Data objects such that type safe insertion and extraction of user defined objects is possible. ??tbc??

3. instruction section

In this section we will provide information on how to use the Middleware. We explain how to work with both the Device model and with the Topic model and how to create device drivers. We also explain how to use the naming and configuration services of CMW and where to find configuration files libraries etc.

It is often easier to start with a small example and this is why in the first chapter we provide simple examples for using devices, creating device servers as well as subscribing and publishing on topics..

3.1 Getting started (simple examples)

In the following sections we will provide simple code examples of how to use middleware facilities. Programming examples often start with the “Hello World!” example and we will continue this tradition. The examples use the device-oriented and topic-oriented versions of the “Hello world!” program. Distributing just “Hello World!” string all the time would not be be a very practical example. To have device properties or topic messages change frequently, we will use the string representation of the current date and the seconds representation of the current clock added to the hello message.

For the time being all API’s are available only in Java, except for the device/property server API, which is available only in C++. Other API implementations are under implementation or are planned and will be available during 2001.

3.1.1 Device/Property model

For the purpose of this example we define a device class “Hello” which has three properties: “Dated_hello”, “Seconds” and Frequency. In the following we decsribe the type, access and meaning of each property:

	Property name
	Type
	Access
	Description

	HelloMessage
	String
	read
	Hello message including the from information and the date based on seconds value.

	Seconds
	Double
	Read/write
	Seconds since 1. Jan. 1970

	Frequency
	Integer
	Read/write
	Frequency by which seconds value will be updated from the current clock

3.1.1.1 Using devices (as client)

In following we will provide a simple Java code example of how to get a device property and how to subscribe to a property.

To get a device property the user has to create a device and then call the get method on the device specifying the property name. The value can be then extracted from the received data object:

[image: image1.wmf]Concrete adapter

customization

cmwfwDeviceAdapter

base class

cmwfwPoller

base class

cmwfwForwarder

base class

Device server framework

CORBA

Middle and GUI tiers

User interface

Devices

Concrete poller1

customization

Concrete poller n

customization

Concrete forwarder 1

customization

Concrete forwarder n

customization

Inheritance

Communication

Interface

Customization interface

1 // Java

2 import cmw.client.*;

3 import cmw.data.*;

4 try {

5 CmwDeviceBase hello = new CmwDeviceBase("Hello.BA864");

6 CmwData data = hello.getCmwData("HelloMessage");

7 System.out.println("Message from Hello.BA864: “ + data.extractString(“value”));

8 }

9 catch (Exception ex) {

10 System.out.println("get failed: " + ex.getMessage());

11 }

6 Create a new device specifying the unique device name. The server name for this device will be resolved but the server will not be accessed yet. If the device is not known then IllegalArgumentException will be thrown.

7 Get property HelloMessage as Data object. This Data object will contain at least the value of the property. Normally a timestamp of the time when the value was obtained will also be part of the data object. This call can throw a number of exceptions, notably when the server of the device is down or when this property is not valid.

8 We print the value of the property. If no property is specified, the value property will be assumed.

There are several other ways in which device properties can be read (e.g. asynchronous, for a given Cycle Selector, with Filter etc. This will be decribed later in this Section.

An important new facility which is offered by the CMW is subscription. In the following example we will show how to subscribe to the HelloMessage property:

12 // Java

13 import cmw.client.*;

14 CmwDeviceBase hello = null;

15 try {

16 hello = new CmwDeviceBase("Hello.BA864");

17 }

18 catch (Exception ex) {

19 System.out.println("Cannot create device: " + ex.getMessage());

20 }

21 HelloHandler hh = new HelloHandler();

22 MonitoringToken mt = null;

23 Synchronized hh

24 {

25 try {

26 mt = hello.monitorOn("HelloMessage", hh);

27 hh.wait();

28 }

29 catch (Exception ex) {

30 System.out.println("Failed in monitoring: " + ex.getMessage());

31 }

32 }

18

Similarily to the “get” example we create the device.

23, 28
The HelloHandler hh is the listener which will receive updates. We will show the code for the listener in the following.

24

The MonitoringToken is the object which keeps trace of subscriptions. When this object is destroyed, the subscription will be cancelled as well. It can also be used to distinguish between several updates received by the same listener.

28

The actual subscription call. It will throw exception if the server is not available or if the property is not valid.

And here is the class which will receive subscription updates. This class has to implement the Java Interface CmwSubscriptionListener:

5 // Java

6 import cmw.client.*;

7 import cmw.data.*;

8 public class HelloHandler implements CmwSubscriptionListener

9 {

10 public HelloHandler()

11 {

12 }

13 public void handleCmwData(MonitoringToken mt, CmwData value)

14 {

15 Date date = new java.util.Date((long)value.extractDouble("timestamp"));

16 System.out.println(date.toString() + " Received hello update: " +

17 value.extractString("value"));
18 }

19 public void disconnected(MonitoringToken mt)

20 {

21 //TODO: Implement this cmw.client.CmwSubscriptionListener method

22 }

23 public void reconnected(MonitoringToken mt)

24 {

25 //TODO: Implement this cmw.client.CmwSubscriptionListener method

26 }

27 public void cancelled(MonitoringToken mt)

28 {

29 //TODO: Implement this cmw.client.CmwSubscriptionListener method

30 }

31 public void handleException(Throwable ex)

32 {

33 System.err.println("Received exception: " + ex.getMessage());

34 }

35 }

14
This method will be called when a new data update has been received for this listener.

16
Convert the timestamp to a Date object.

17-18
We simply print the date of the data change from the timestamp and the value of the HelloMessage property.

20-35
We did not implement most of the other methods to handle disconnection/reconnection of the server. The empty methods have to be there so that the interface is implemented

As for the simple device get methods, there are also several variants of the monitoring facility and there will be more explainations later in this section.

3.1.1.2 Writing device adapters

In following we will provide a simple code example of the Device Adapter implementing the Hello device which has been described before. For the time being the server API is only available as C++ API. C and Java versions will be made available during 2001.

To make HelloAdapter we have to derive from cmwfwDeviceAdapter, and provide at least a concrete implementation of the get(), set() and poll() methods:

HelloAdapter.h

// C++

#ifndef __HELLOADAPTER_H__

#define __HELLOADAPTER_H__

class HelloAdapter:public cmwfwDeviceAdapter(){

public:

 HelloAdapter();

 ~HelloAdapter;

void init();

void terminate();

void monitorOn(const cmwfwIOPoint& iop);

void monitorOff(const cmwfwIOPoint& iop);

cmwfwData* get(const cmwfwIOPoint& iop,const cmwfwData& ctx);

cmwfwForwarder* getForwarder(const cmwfwIOPoint& iop);

void poll(const cmwfwIOPoint& iop, cmwfwData& data_to_fill,

 cmwfwValueQualifier& vq_to_set);

//Any additional methods and members can be added as long

//as the methods above are implemented.

protected:

private:

};

#endif//__HELLOADAPTER_H__

HelloAdapter.cc

// C++

#include "HelloAdapter.h"

HelloAdapter::HelloAdapter(){

};

HelloAdapter::~HelloAdapter(){

};

void HelloAdapter::init(){

//Perform initialization of device “Hello”, if needed,

//and possibly initialize pointers to pollers, etc…

};

void HelloAdapter::terminate(){

//Perform any needed actions to shut down device “Hello”

//and possibly pollers

};

void HelloAdapter::monitorOn(const cmwfwIOPoint& iop){

//Nothing to be done here for device “Hello”

//since there is no poller

};

void HelloAdapter::monitorOff(const cmwfwIOPoint& iop){

//Nothing to be done here for device “Hello”

//since there is no poller

};

cmwfwData* HelloAdapter::get(const cmwfwIOPoint& iop,const cmwfwData& ctx){

 cmwfwData* d = new cmwfwData();

 //retrieve data from device “Hello” according to iop, and place it in “d”

 //The framework will deliver that data to the calling application,

 //and delete “d”.

 //DO NOT delete “d” in this method.

 return d;

};

void HelloAdapter::set(const cmwfwIOPoint& iop, const cmwfwData& ctx,

 const cmwfwData& value){

 //extract the data from “value”, and set the property found in iop accordingly

};

cmwfwPoller* HelloAdapter::getPoller(const cmwfwIOPoint& iop){

 return 0; //since no poller exists in this setup

};

cmwfwForwarder* HelloAdapter::getForwarder(const cmwfwIOPoint& iop){

 return 0; //Since no adapter exists in this setup

};

void HelloAdapter::poll(const cmwfwIOPoint& iop, cmwfwData& data_to_fill,

 cmwfwValueQualifier& vq_to_set){

 //Since no polling mechanism is implemented in this example,

 //this method will not be called.

 //In the opposite case, one should fill the provided data container

 //“data_to_fill” with data, (string, double or integer) from

 //“Hello” according to the information in iop.

 //The framework will then distribute data to subscribed listeners.

};

We also have to provide the initialization routine which will be called by the server on start-up. We simply instantiate a HelloAdapter and return it to the server.

HelloAdapterInit.cc

#include “HelloAdapter.h”

cmwfwDeviceAdapter* initRoutine(){

return(new HelloAdapter());

};

The code above is the minimum to implement a device adapter. It does not cover subscription and there is neither associated poller nor a forwarder for the HelloAdapter.

To allow subscription to the Hello device, the HelloAdapter has at least to provide a poll() method and return a poller in the getPoller() method. In practice users will do not have to write pollers. There are default pollers for the PS and SL control systems which can be specified:

The following code fragments show the implementation of these two methods to enable subscription to Hello devices in the PS control system:

Assuming that HelloAdapter has the following member:

cmwfwPoller* my_poller

cmwfwPoller* HelloAdapter::getPoller(const cmwfwIOPoint& iop){

 //If there is only one poller for all iopoints

 //the my_poller member would most likely be initialized

 //in the constructor or in the “init” method. In this case

 //we simply return the pointer.

 //Or – if multiple pollers exist we need to find the one

 //corresponding to the given iopoint and return it.

};

void HelloAdapter::poll(const cmwfwIOPoint& iop, cmwfwData& data_to_fill,

 cmwfwValueQualifier& vq_to_set){

 //The simplest implementation of this method would be just to call

 //the “get” method of HelloAdapter, and fill “data_to_fill” with the result

 //The “vq_to_set” can be set to“NOT_SET”, “DATA_CHANGED” or

 //“DATA_UNCHANGED”.

 //Setting “vq_to_set” to “NOT_SET” will cause the framework to

 //apply a simple algorithm to decide whether the data has changed or not.

 //Any other value of “vq_to_set” will be reflected in the updating of

 //subscribed clients

 //The framework distributes the provided data to

 //subscribed listeners, according to “vq_to_set”.

};

The above example assumes that the underlying device is “passive” and we have to poll it. The server framework provides also the support for “active devices” i.e. devices which have a life on they own and can take initiative to notify about changes. The example of such device is OPC server which has subscription facility by itself. We will describe in chapter >>>> how to forward data on change.

3.1.2 Topic model

3.1.2.1 The HelloWorld example

The hello world message is published on a topic and a subscriber subscribes to it. For the purpose of this example we defined the “Hello” topic in the topic hierarchy. The topic-oriented API allows several types of messages. We have choosen the javax.jms.MapMessage because it allows an implementation which is similar to the one explained for the Device model:

1 import cern.cmw.mom.pubsub.*;

2 import javax.jms.*;

3 public class HelloWorld implements SubscriptionListener {

4 private static final String HELLO_TOPIC = "CMW.TMP.Hello";

5 private static final String MSG_TXT = "Hello World !!";

6 private static final String TEXT_MAP_FIELD = "TXT";

7 private static final String TIMESTAMP_MAP_FIELD = "TS";

8 private long subscriptionToken = 0;

9 public HelloWorld() {

10 subscribeToHelloWorld();

11 publishToHelloWorld();

12 }

13 public void subscribeToHelloWorld() {

14 try {

15 subscriptionToken = PubSubFactory.subscriber().subscribe(HELLO_TOPIC, this, null);

16 } catch (Exception e) {}

17 }

18 public void publishToHelloWorld() {

19 try {

20 MapMessage message = PubSubFactory.publisher().createMapMessage();

21 message.setString(TEXT_MAP_FIELD, MSG_TXT);

22 message.setLong(TIMESTAMP_MAP_FIELD, System.currentTimeMillis());

23 PubSubFactory.publisher().publish(HELLO_TOPIC, message);

24 } catch (Exception e) {}

25 }

26 public void close() {

27 try {

28 PubSubFactory.subscriber().unSubscribe(subscriptionToken);

29 PubSubFactory.subscriber().close();

30 PubSubFactory.publisher().close();

31 } catch (Exception e) {}

32 }

33 public void onMessage(Message m) {

34 if (m instanceof MapMessage) {

35 try {

36 MapMessage message = (MapMessage)m;

37 String txt = message.getString(TEXT_MAP_FIELD);

38 java.util.Date date = new java.util.Date(message.getLong(TIMESTAMP_MAP_FIELD));

39 System.out.println("Got message : [" + date.toString() + "] " + txt);

40 } catch (Exception e) {}

41 close();

42 }

43 }

44 public static void main(String[] args) {

45 HelloWorld helloWorld1 = new HelloWorld();

46 }

47 }

4 The topic name is "CMW.TEMP.Hello".

6-7 The MapMessage has two fields, a String for the text message and a long for the timestamp.

14-16 The subscription is started, subscriptionToken holds the reference to it.

20-23 The MapMessage is created and filled with the two fields, text and timestamp, than it is published.

28 The subscription is closed through its reference subscriptionToken.

29-30 The Publisher and Subscriber singletons are closed and their resources freed.

33-43
The message handler method. It implements the SubscriptionListener::onMessage method interface and is executed on message reception for the associated subscription. The MapMessage is received and the two fields are extracted.

3.2 Working within the device/property model

This chapter provides detailed explanations of how to use the Device/Property programming on the client and on the server side. The actual API description, class hierarchies and signatures are available as JavaDoc or similar documentation in the development section of the project Web site http://www.cern.ch/controls-middleware.

In Version 1.0, the Controls Middleware provides on the client side a simple Java API. It has one main class, called DeviceBase, which implements the Device/Property model for simple data types. It provides functionality for set and get (both blocking and non-blocking) and for monitoring of device properties (both on-change and cycle-oriented). For a detailed description of the Device/Property model please refer to >>>section ###.

The API presented in this section is partly composed of Java classes and partly of interfaces. There is a reason for also using interfaces: to make the API independent of specific middleware technology. One major goal of the CMW project was to define a stable API for the CERN application programmers, that will not change, even if the underlying middleware technology has to be changed. Java Interfaces make this task easier.

3.2.1 Data types

Version 1.0 Middleware uses a generic container class, called Data, to transport its data between client and server. Future CMW versions may also provide facilities to create domain-specific data types, such as data classes that contain time stamps, and possibly even more complex structures containing composite measurement data.

This section describes how to Data objects are created, how information is inserted and extracted from it, and how they can be used to transport complex data types.

3.2.1.1 Insertion and extraction of information

Data has methods to insert and extract all data types supported by CMW, that is, boolean, byte, short, int, long, float, double, String and arrays of these types. With each call to an insert method, one data entry is inserted into the Data object. It is possible to make multiple insert calls and insert more than one value into a Data instance, each entry identified by a different tag. This is shown in the following example:

Data roomTemp = new Data();

float val = 24.9;

String room = “936-R-040”;

dat.insert(“temperature”, val);

dat.insert(“location”, room);

In the above example, a Data instance has been created and assigned to the variable roomTemp, and two pieces of information have been inserted into it: a floating point value with the tag “temperature”, and a String with the tag “location”.

Let’s admit that the above Data object has been created on the server side and has been transmitted through the Middleware to the client side. The following code can be used to extract this information again:

float temp = roomTemp.extractFloat("temperature");

String room = roomTemp.extractString("location");

In this example, the client knows exactly what information is stored in the Data object, and how to access it: he knows the type of the value and the tag that was used to insert the values. In other words, the client and the server side of a middleware connection must agree on the tags and the data types. Otherwise, if a wrong tag is used or a wrong type is expected, a run-time fault occurs, and an exception is thrown. This is shown in the following example:

// wrong tag => throws IllegalArgumentException:

float temp = roomTemp.extractFloat(“temp”);

// wrong type => throws a ClassCastException:

int room = roomTemp.extractInt(“location”);

In the first line of code, using a wrong tag ("temp") causes an BadParameter exception to be thrown; the second line attempts to extract the double as an integer, which causes a TypeMismatch exception.

Although it might seem tedious to program with specific data tags, this is normally not a problem. Object-oriented programmers will anyway tend to create domain-specific classes (or C structures) that define the type and the name of the data items. The same types and tags are used to insert and extract the information in the Data object. This technique has the advantage of providing some degree of type safety. #This is discussed in more detail in the >>>section on ###complex data types.#

The Data container also provides support for generic programming. The information it contains can be extracted without having to specifically know the tags and the type of the data items it contains. For this, Data provides a method

Object extractObject(String tag)
This method wraps primitive data values in corresponding Java objects, a practice often seen in Java (e.g. in the java.lang.reflect API). For instance, a value of type int is returned as an java.lang.Integer object, and an array of bytes as the Object that represents the array and can be cast to byte[]. This is illustrated with the following code example.

String[] tags = roomTemp.getTags();

String tag;

Object value;

DataEntry cde;

for (int tt=0; tt< tags.length; tt++) {

tag = tags[tt];

value = roomTemp.extractObject(tag);

System.out.println(tags[tt] + " = " + value);

}

3.2.1.2 Standardized Data tags

From the examples shown so far, it becomes clear that an agreement is necessary between the server and client which exchange information in Data containers. The code that inserts a data item must use the same tags as the code that extracts it. So far, the CMW has standardized five tags:

· DEFAULT – the tag that identifies the main value contained in the Data object.

· VALUE – the same as DEFAULT

· TIMESTAMP – the tag that identifies the timestamp (the milliseconds since 1970, expressed as a double)

· CYCLESEL – the tag that identifies the cycle selector

· FILTER – the tag that identifies the remote filter

In the Java implementation, these tags are defined as constants in the DataTags class.

There are advantages of using constant strings over using the string in double quotes directly in the code:

· they constitute a basic agreement between the different parties that use middleware

· declaring them as constants prevents typing mistakes that are only discovered at run-time.

3.2.1.3 Internal storage using the DataEntry Class:

The Data container uses the class DataEntry to store information. As shown above, the programmer normally does not have to use these classes. However, they can be handy in some occasions, e.g. to obtain information about the type of the stored, using the getValueType() method, which returns one of the type constants defined in the DataEntry class.

3.2.2 Using devices as a client

This section describes how client application programmers can use the Middleware to communicate with devices on the server side.

As explained in >>>section###, the Device/Property model is based on a Device with properties that represent characteristics or functions of the real hardware device. The value of a property can be read and modified with get and set interactions, and surveilled through a monitoring subscription.

In the CMW, hardware devices are represented with a Class (called DeviceBase in Version 1.0). For each hardware device, an instance of this class is created. This instance can be used to supervise and control hardware devices.

The DeviceBase class has methods to set and get device properties (both in a blocking and non-blocking manner) and to monitor them (both on-change and cycle-oriented). DeviceBase uses the generic Data containers described above to transport information. In future versions of CMW, sub-classes of DeviceBase may be defined, such as CmwDevice and JCmwDevice. CmwDevice would have the same kind of set/get and monitorOn/Off methods, but use specific, structured data types instead of Data. JCmwDevice will be aimed at Middleware set-ups with Java both on the client and the server side. It will be capable of transmitting any serializable Java class.
The following subsections describe how to use the DeviceBase class: how to create instances of it, how to do blocking and non-blocking set/get interactions and how to monitor the properties of a remote device.

3.2.2.1 Creating and destroying devices

In the CMW, every hardware device is identified by a name, called the device instance name. This name must be unique throughout CERN (or at least throughout the CMW name space). The CMW does not impose a particular naming scheme, it can accommodate any string. A few examples of device instance names are: ### ###. However, it is recommended to use the naming conventions described in >>>[##Reference to naming conventions##].

The device instance name is used to instantiate the DeviceBase class, as following:

DeviceBase dev = new DeviceBase("Mugef_22");

This constructor establishes a connection to the remote Middleware device server. Note, however, that in Version 1.0 only establishes this connection to the device server, but it does not verify if the device instance actually exists and responds to interactions. (The reason for this lies in the difference between the middleware device server and the device instance: The device server is a program that is integrated with middleware and provides connections to many device instances, each corresponding to a hardware device).

If an problem occurs during device creation, one of three Exception types is thrown:

· InternalException - if a problem occurs when instantiating the Middleware service

· BadParameter - if a wrong or invalid device name is used

· InternalException - if the device could not be located due to an internal CMW problem.

Note that InternalException and BadParameter exceptions are sub-classes of CmwException, and they can be caught by catching CmwException.
The first time a client program creates an instance of DeviceBase in a Java Virtual Machine (JVM), the constructor has to initialise the whole Middleware. This includes creating the middleware transport service, and connecting to the naming service and/or to the message broker. In this first creation much more code is executed and many new connections are established than in subsequent ones. Therefore the first creation takes more time, and a broader spectrum of exceptions may be thrown.

A client instance of DeviceBase can be destroyed either by calling the shutdown() method or simply by setting the pointer to the DeviceBase object to null, thus enabling garbage collection. Note however, that destroying an instance of DeviceBase simply disconnects from the remote device instance, it does not shut the remote device down. In other words, the device instance remains available for other clients that may connect to it later.

3.2.2.2 Set and Get access to device properties

The CMW provides both blocking and non-blocking operations to read and write device properties. A client program should use a blocking operation if it wants to wait for the result of a remote operation, carried out in the server. This is the normal way of using short-lived operations. On the other hand, in case of a long-lasting operation (e.g. moving a slow motorized element) a client typically does not want to be blocked, but do other things in the mean time. In this case, it will use a non-blocking operation, that returns control immediately, and later delivers the result to a Listener through a call-back mechanism. In the DeviceBase class, non-blocking set/get methods can be recognized by the DataListener parameter in their method signatures. This is the Listener through which CMW delivers the result.

Blocking operations are also called “synchronous”, because the client thread is always synchronized with the remote thread that executes the operation on the server, waiting for the delivery of the result. Conversely, non-blocking operations are also called “asynchronous” operations, because the result is delivered asynchronously to the client thread’s activity. It comes when it is ready, not necessarily when the client thread is waiting for it. (We prefer to use the terms “blocking” and “non-blocking” to avoid confusion with the term “synchronized” which in the Accelerator normally refers to a synchronization with events of the timing system, as discussed next).

The CMW provides functionality to execute remote set and get operations either immediately or synchronized with a timing event (called “on CycleEvent”).

“Immediately” means that the client program wants the server to execute the set or get requests without delay. “On CycleEvent”, means that the client program specifies a timing event at which the server shall execute the request. The server waits for the next occurrence of this event to execute the request. How exactly the server does this depends on the implementation of the remote device. For example, a very simple device which is not capable of synchronizing with cycle timing has to rely on the CMW to wait for the requested timing event. The middleware server framework (>>> chapter ##) has this functionality. While this is a good solution for simple devices that do not require extremely precise timing, timing-aware devices should deal with synchronization themselves. CMW transparently hands the CycleSelector to such devices.

In the DeviceBase class, set and get requests that are synchronized with the timing system can be recognized by the CycleSelector argument.

3.2.2.3 Blocking (synchronous) operations

The DeviceBase provides the following methods for blocking requests:

public Data getData(String propName)

throws [several subclasses of CmwException]

public void setData(String propName, Data value)

 throws [several subclasses of CmwException]
The getData method takes the property name as an argument, and returns the result encapsulated in a Data object. The setData method takes both the property name and a Data container with the value as arguments.

In case of errors, Middleware throws one out of several exceptions, which are all sub-classes of CmwException:

· BadParameter Indicates that an illegal or inappropriate argument has been passed to a method

· Timeout indicates that an operation on a device does not terminate within the specified time limit

· NoConnection indicates that a remote device could not be contacted (for example, because the device server is down).

· IoError indicates an error in the low level I/O software/firmware/hardware used in the device servers. It is generated outside CMW.
· InternalException indicates an internal error in the CMW.
As already mentioned earlier, these exceptions can be caught by simply catching their super class CmwException. This will be sufficient for all those clients that simply display the error message. However, clients that are interested in the exact cause of the error, will want write a separate catch clause for each of the exceptions.

3.2.2.4 Non-blocking (asynchronous) operations

As >>>already### mentioned, a non-blocking operation is executed in two steps:

· Step 1: the client sends a set or get request over the middleware to the server. This happens when the client calls one of the getData or setData methods indicated below. Immediately after the request has been handed over to Middleware, the client is unblocked again (hence the name “non-blocking”).

· Step 2: the server executes the request and sends back the result to the client through a call-back mechanism. For this, Middleware calls one of the methods of a DataListener object as explained below.

The DeviceBase provides the following methods for non-blocking requests:

public Data getData(String propName, DataListener cdl) throws throws [several subclasses of CmwException]
public void setData(String propName, Data value, DataListener cdl)
 throws [several subclasses of CmwException]
As already mentioned, non-blocking methods can be recognized by the DataListener parameter in their signatures, which blocking methods do not have. The DataListener is an interface that must be implemented by the client. Middleware uses it to deliver the result of the set or get operation to the client application, as follows.

In the getData() operation, Middleware delivers the retrieved property value by calling the handeData() method of the DataListener. In the setData() operation, Middleware does not have a value to report back; therefore, it calls the handleData() with a null argument, simply to inform the client that the set operation has been successfully completed, and when this has happened.

In case of an error, two kinds of behaviour are possible, depending on when the error occurs. If it occurs in Step 1 (i.e., while the client is calling the setData or getData methods to deliver the request to middleware), these methods are interrupted and the client receives an exception. If it occurs only in Step 2 (i.e., after the setData or getData have returned and Middleware has accepted the request), Middleware may deliver Exceptions through the DataListener, by calling the handleException() method, which is defined in the interface ExceptionListener which is a super interface of DataListener.

The exceptions thrown in Step 1 are the following which are all sub-classes of CmwException:

· BadParameter Indicates that an illegal or inappropriate argument has been passed to a method

· NoConnection indicates that a remote device could not be contacted (for example, because the device server is down).

· InternalException indicates an internal error in the CMW.
In Step 2 other exceptions may delivered through a call to the handleException() method:
· Timeout indicates that an operation on a device does not terminate within the specified time limit

· IoError indicates an error in the low level I/O software/firmware/hardware used in the device servers. It is generated outside CMW.

A word on thread safety is necessary here. In non-blocking calls, special care must be taken to avoid problems of thread safety. The reason is that two threads are involved in a non-blocking request: the client thread and a thread belonging to Middleware. The client thread calls the getData and getData methods, while the Middleware thread does the call-back. In all but very simple cases (e.g. if the call-back thread just prints the result to the screen), the two threads need to interact in a coordinated way. For instance, if the client wants to retrieve and process the result of the set/get call, it has to know somehow when the result is ready. Otherwise, errors and unpredictable behaviour might occur. In practice, this means that the DataListener has to be implemented in a thread-safe manner, and a mechanism based on the wait/notify methods has to be used. Please refer to the section on >>>##Call-backs and Thread Safety## for further information on how to proceed.

3.2.2.5 Device monitoring

Monitoring enables an instance of DeviceBase to receive updates of the property values, using a publish/subscribe paradigm. The middleware server sends an updated property value to the client either periodically, synchronized with a cycle event (cycle-dependent subscription) or when the value of the property changes (on-change subscription). It is also possible to combine cycle-dependent and on-change subscriptions.

The DeviceBase class provides three methods for monitoring: two for subscribing and one for unsubscribing:

MonitoringToken monitorOn(String propName,

 MonitoringListener csl);

MonitoringToken monitorOn(String propName,

 boolean onChange,

 CycleSelector cyleSel,

 MonitoringListener csl);

 void monitorOff(MonitoringToken mt);

The first monitorOn() method creates an on-change subscription to the property indicated in propName, and registers a call-back listener (MonitoringListener) to which Middleware shall deliver updated property values. It returns a MonitoringToken, an object that represents this subscription and is needed to unsubscribe from it (it is passed in the monitorOff() method). The MonitoringToken contains information about the subscription. This class is described in more detail below.

The second monitorOn() method provides more options. This method is typically used to register for a cycle-dependent subscription, but it can also be used for an on-change subscription or one that combines both. For an cycle-dependent subscription, the client has to provide a CycleSelector, i.e., an object that specifies the timing event(s) at which an update shall be sent. The CycleSelector is described in >>> section 1.1.2.6 below. Again, a MonitoringListener must be provided for call-backs.

The monitorOff() method is used to cancel a subscription. The subscription to be cancelled is identified by the MonitoringToken, which was generated by Middleware and given to the client program as a return value of the monitorOn() method.

The MonitoringListener (c.f. below) is a Java Interface with five call-back methods, through which Middleware delivers updates of property values, error reports, and other information to the subscribed client program. More precisely, it defines the following methods:

· handleData() – the method used by CMW to deliver updates of the property value.

· handleException() – the method used by CMW to deliver Exceptions which report errors that occur in the device server instance or in the middleware.

· disconnected() and reconnected() – two methods used by CMW to inform the client if connectivity to the device server is lost and when it is re-established again. Temporary loss of connectivity can happen if the middleware device server program has to be restarted or if the Server CPU on is rebooting. CMW automatically re-establishes all connections as soon as the server is running normally again.

· cancelled() – the method used by CMW to acknowledge that a call to monitorOff()was successfully executed.

Each of these methods passes a “crippled” MonitoringToken object to the client, which the client can use to identify the subscription from which the data comes. “Crippled” MonitoringTokens are described in more detail in section 1.1.2.5.1. In addition to this, the handleData and handleException methods pass also a Data or an Exception object.

The implementation of MonitoringListener must be thread safe, because the call-backs from the middleware are asynchronous with respect to other threads running in the client programs. Some issues related to this are further explained in the >>>section ##issues of thread safety##.

The MonitoringToken is an object created by Middleware that contains information about an active subscription. It contains the property name and the type of subscription (on-change or cycle-oriented). A first instance of MonitoringToken is returned to the client by the monitorOn() methods. The client must keep a reference to it, because he needs it to unsubscribe: it has to be passed as a parameter to the monitorOff() method.

In fact, the MonitoringToken implements a mechanism for automatic unsubscription, which is triggered by the Java Garbage collector. Before it gets garbage collected, the MonitoringToken cancels the subscription it belongs to. This is very useful if the client abandons the DeviceBase object without calling the monitorOff() method. In this case, the subscription is cancelled automatically. On the other hand, it can cause a subscription to be cancelled accidentally, namely if the client program does not keep a reference onto the MonitoringToken returned by monitorOn(). The code >>>below shows a correct subscription.

DeviceBase motor = new DeviceBase("Motor_1");

MonitoringListener listener = new MyListener();

// important: keep a reference to the MonitoringToken returned!

MonitoringToken mt = motor.monitorOn("position", listener);

If, in the third line, the MonitoringToken object returned by the call to monitorOn() is not assigned to the variable mt, the subscription would be cancelled as soon as the MonitoringToken was garbage collected:

DeviceBase motor = new DeviceBase("Motor_1");

MonitoringListener listener = new MyListener();

// this is wrong! Garbage collection will unsubscribe automatically!

motor.monitorOn("position", listener);

3.2.2.5.1 “Crippled” MonitoringTokens

In addition to this initial MonitoringToken object, Middleware creates new “crippled” MonitoringToken objects and passes them to the client through the call-back of MonitoringListener methods. They enable the client to identify the subscription that issued new data. We call them “crippled” because they cannot be used for cancelling the subscription as opposed to the MonitoringToken object returned by the initial call to monitorOn. They are just useful to distinguish subscriptions.

Note that the “crippled” MonitoringTokens can be ignored if you use a separate instance of MonitoringListener for each subscription. They are only needed if a client re-uses the same instance of MonitoringListener to receive updates from multiple subscriptions. To identify the subscription, the client program has to compare the call-back instances of MonitoringToken with the initial one. This must be done with care: since they are different instances, it is not possible to use the identity operator (= =) to compare the initial MonitoringToken with a call-back MonitoringToken. The MonitoringToken.equals() method must be used instead.

3.2.2.6 Working with timing cycles

The concept of Accelerator Timing cycles is used both in PS and SL control systems although the syntax of the cycle selector and the semantics associated with the get/set operations and with monitoring may be slightly different. From the CMW point of view, when the cycle selector is specified in a get or set operation, this information will be delivered to the CMW server. We will describe in the specific sections the exact semantics for each server.

When the cycle selector is specified in monitorOn() (c.f. section 1.1.2.5), the server will publish new data as soon as it is available for the specified cycle (see also the machine and server-specific definitions and examples later in this section).

The cycle-oriented methods of the DeviceBase can be easily recognised by the CycleSelector argument:

public void getData(String propName, CycleSelector cs,
 DataListener cdl);

public void setData(String propName, Data value,
 CycleSelector cs, DataListener cdl);

public MonitoringToken
 monitorOn(String propName, boolean onChange,
 CycleSelector cs, MonitoringListener csl);
A cycle selector serves to indicate a specific events in a specific Cycle, such as the “Warning Extraction Event” in the Proton Cycle. Normally, such an event appears periodically, every time that cycle is run. This is the way it is currently used in the SPS MTG timing. However, it is also possible to specify a non-periodic cycle selector, which picks out an event in a specific instance of the cycle, e.g. “Warning Extraction Event in Proton Cycle number 1208”. Such an event (with a specific number) appears only once during a run.

In the CMW API, the CycleSelector is defined as a Java interface with one method that returns the cycle selector as a String:

public interface CycleSelector {
 public String getAsString();
}

There is a trivial default implementation of this interface, called the DefaultCycleSelector. This class simply takes a String as parameter for the constructor and returns it when the getAsString() method is called.

More specialized CycleSelectors can be provided by implementing specific classes, one for each different type of cycle selectors (PS, current SPS MTG, SPS-2001, etc.). For instance, the current SPS MTG timing, with events such as 0x2106ffff might have a class

public class SpsMtgCycleSelector implements CycleSelector {
 public SpsMtgCycleSelector(int cycleCode);
 // return the ordinal occurrence of the event
 public short getOccurrenceInCycle();
 // only used internally: returns the cycle selector
 public String getAsString();
}

Why use a class for the CycleSelector and not simply pass a String? There are several reasons for using an interface with different accelerator-specific implementations instead. Firstly, in the constructor, the class can verify that the specified cycleCode is actually valid. For instance, in the SPS MTG, it has to be a 4-byte hexadecimal code with a well-defined meaning for each byte, which can be checked in the constructor. Secondly, a class may be useful in the client application, e.g. if the cycle selector has to be passed to other objects. Last but not least, the class may specify other useful methods to return information about the cycle such as the getOccurrenceInCycle() method illustrated above.

3.2.2.6.1 PS-specific semantics and examples

In PS, when cycle selector is specified in monitorOn(), the data will be read after the DataReady event for this cycle. ????

When the cycle selector is specified in a get(), the last available data value for this cycle (normally PLS line) will be delivered.

When the cycle selector is specified in a set(), ???

3.2.2.6.2 SPS-specific semantics and examples

In SL, when cycle selector is specified in monitorOn(), the data will be polled at the specified event and the cycle identification will be specified in the SL AQUIP() [ref] call.

When the cycle selector is specified in a get(), the cycle identification will be passed to the device in the SL AQUIP() call. The Equip server will normally return the last data associated with this event. Some servers may wait until this event occurs and then return the data.

When the cycle selector is specified in a set(), the cycle identification will be passed to the device in the SL AQUIP() call.

3.2.2.7 Using remote filters

The CMW provides facilities for so-called filtered gets. This are getData() requests in which a client can tell the server device instance to apply a filter to the property value and return only a small part of the property data. This is necessary for properties that contain a large amount of data, such as the ### property of the Beam Position Monitors that contains a few megabytes of data. Although it is technically possible to retrieve large amounts of data in a getData() request, it is normally not necessary.

The CMW defines an interface RemoteFilter that must be implemented with device-specific filter classes. In CMW Version 1.0 only a trivial remote filter implementation exists, namely the class DefaultRemoteFilter. This filter takes a String in the constructor, which is sent over the Middleware to the device server. Please note that the client and the server have to agree on a format to define the filter as a String when they use the DefaultRemoteFilter class.

 More elaborate filters are not yet available. However, in a future version, it is planned to provide the following:

· ​ArrayRangeFilter – a filter capable of selecting subsets of an array, based on their index in the array. This can be used in the example given >>>above, to filter out a range of bytes from a property that contains a much larger amount of data. ArrayRangeFilters could be nested and therefore contain more than one range.

· ValueRangeFilter – a filter capable of selecting subsets of an array, based on the value. This may be used, for instance, to eliminate values that are outside some confidence interval.
Other types of filters can be implemented, according to user requirements.

3.2.3 Providing devices as a server

The middleware server framework has been developed for LynxOS 3.1, using technologies such as JTC (Java Threads in C++), ORB Express and RDA (Remote Device Access).

The framework interface is comprised of two parts.

One is for applications, having a need to communicate with underlying devices.

This part of the interface remains the same regardless of the environment.

The other part, the framework customization interface, facilitates the adaptation of the framework to various environments.

Programmers can add specific functionality to the framework regarding data exchange with equipment and the related timing.

Using and customizing the framework will enable application writers to have auniform view of any piece of equipment at CERN.

This paragraph describes some of the possibilities, programmers have using the framework customization interface.

As described in paragraph 3.2.3, the framework interface for developers is comprised of three base classes and an initialization routine.

To customize the framework, programmers need to implement the required functionality in classes that derive from these base classes.

Deriving from the cmwfwDeviceAdapter class, one can encapsulate all intricacies regarding data retrieval, and provide applications with a uniform view regardless of the data format.

All access, seen from the application side, will then be done via four calls, namely “set”, “get”, “monitorOn” and “monitorOff”.

Any data entity will be identified by parameters such as device name (such as “Hello” in the example in 3.1.1.2), device properties (such as “Dated_hello”, “Seconds” and “Frequency” in the example of 3.1.1.2).

Client applications will then have seemingly direct access to the data via get and set, and can also subscribe, i.e. request to be notified whenever the desired data is updated.

The server framework manages this mechanism hidden from the developer, but it is also possible to disable it in order to do a local implementation.

 In that case iopoints from the monitorOn and monitorOff calls will be passed directly to the requesting class deriving from either the cmwfwPoller class or the cmwfwForwarder class.

At the moment the device adapter class is a singleton within the same process space.

The number of pollers and forwarders the developer can provide is, in theory, limitless.

The mapping of iopoints to a poller and/or a forwarder is the responsibility of the developer.

The framework provides an iopoint, and asks for a pointer to the appropriate poller/forwarder instance.

The setup of the framework will typically be the following:

· For passive devices incapable of providing timing

A device adapter instance will exist, along with any number of pollers

In the case of zero pollers, it does not make sense to allow subscriptions, but only to provide access to data via “get” and “set”

· For active devices providing timing autonomously.

A “dummy” device adapter instance will exist with the sole purpose of providing the pointer to the forwarder(s), given an iopoint.

Regarding compilation and linking, a system of makefiles is currently provided in PS, so that developers need only to define a few variables in their makefile and then include the one of the framework, to be able to generate their executables.

The controls middleware framework (cmwfw, referred to as the framework) implements a subscription mechanism. Via the framework, applications can access data from underlying devices (data producing entities), either directly via calls to get/set entries, or by subscription via calls to monitorOn/monitorOff entries.

In the latter case, the framework will provide the data they subscribed to when its value is updated.

From a developer point of view, the framework provides the opportunity of providing applications with a uniform view of equipment communications.

The timing of data retrieval can be implemented via the server framework as well, transparent to application writers.

To exemplify, application writers need not bother whether they will be accessing equipment belonging to SL or PS, when using the server framework.

The following refers to figure 3.1.1.2-1 on the previous page.

The framework device adapter class, cmwfwDeviceAdapter, encapsulates the intricacies of data retrieval, while the responsibility of the cmwfwPoller, if needed, is to trigger this. The triggering is done via calls the certain methods inside the framework.

The cmwdwForwarder class can be used in the case where the triggering capability is embedded in the device.

The forwarder and the poller/adapter constellations can coexist within the same process space, should the need arise.

Data entities in this model are identified by a class called cmwfwIOPoint (referred to as an iopoint).

For now the framework provides developers with a C++ interface, but C and Java interfaces will become available.

Introducing specific functionality to the framework, i.e. adapting it to the present environment requires the following steps:

1. inherit from the classes mentioned above according to your needs, then implement the required mechanisms in the methods provided by these classes, as well as in methods added by yourself.

2. Implement a routine with this signature:

CmwfwDeviceAdapter* initRoutine();

This routine is called at startup, and should create and return a pointer to an instance of the device adapter implemented in step 1. Pollers and/or forwarders should be instantiated in this routine if not in the adapter itself.

A listing of the methods to implement follows:

· Methods provided by the base class, to be called from decendant.

· Methods for the developer to implement.

CmwfwDeviceAdapter:

· None

· void init()
Called once during server start up.

Should implement any needed initialization
· terminate()

Called once at server shutdown.

Should implement shut down code
· monitorOn(const cmwfwIOPoint& iop)

Called every time a subscription is made to a piece of data provided by this adapter.

Should implement any functionality needed in connection with a new subscription.
monitorOff(const cmwfwIOPoint& iop)
Called every time a subscription is cancelled for a piece of data provided by this adapter.

Should implement any functionality needed in connection with a subscription cancellation.
· cmwfwData* get(const cmwfwIOPoint& iop, const cmwfwData ctx)

Called when an application directly retrieves data that is provided by this adapter.

Should allocate and provide the requested data if possible.
· void set(const cmwfwIOPoint& iop, const cmwfwData ctx, const cmwfwData& value)

Called when an application sets data to a certain value.

Should set the specified data to the value provided if possible.
· cmwfwPoller* getPoller(const cmwfwIOPoint& iop)
The developer is responsible for mapping iopoints to hers or his own implementation of a

poller, a forwarder or both. This method is called once for every subscription made.

Should return the concrete poller, if any, associated with the given iopoint.
· cmwfwForwarder* getForwarder(const cmwfwIOPoint& iop)

Called once for every subscription made.

 Should return the concrete forwarder, if any, associated with the given iopoint.
· void poll(const cmwfwIOPoint& iop, cmwfwData& data_to_fill, cmwfwValueQualifier vq_to_set)
Called every time the poller triggers a polling sequence.

Should fill the provided data container with the requested value if possible and set the

ValueQualifier to the appropriate value (NOT_SET, DATA_CHANGED or

DATA_UNCHANGED).

The framework will attempt to determine whether the data has changed or not if the

ValueQualifier is set to NOT_SET.
CmwfwPoller:

· void poll()

Call this method to initiate the polling of all data entities, having subscribed listeners.

· void poll(const cmwfwIOPoint& iop)

Call this method to initiate the polling of a single iopoint, providing that a subscription exist.

· bool isRunning()

Called once for every subscription made.

Should provide information on whether the polling engine needs to be started or not.
· void run()

Called if the isRunning method returns false.

Should start the polling engine.
· void stop()

Can be called at runtime. Should stop the polling engine.
CmwfwForwarder:

· void push(const cmwfwIOPoint& iop, cmwfwData& data,
 const cmwfwValueQualifier& qualifier)

 Call this method to update listeners subscribed to this iopoint.

· void push(cmwfwData& data, const cmwfwValueQualifier& qualifier)
Call this method to update all listeners, regardless of iopoint.

· void activeDeviceListener()
Not called by the framework.

The methods listed above can be called from this method.

Should implement the active device funtionality, providing data and associated iopoints.

3.2.3.1 Creating Device Adapters

3.2.3.2 Implementing get() and set() operations.

3.2.3.3 Pushing device data to the middleware.

3.2.3.4 Implementing pollers.

3.3 Working with the topic model

This chapter will describe how to use the topic oriented programming interface. The actual API specification, class hierarchy and signatures are available in JavaDoc format in the development section of the CMW web site http://www.cern.ch/controls-middleware.

Version 1.0 only provides a Java API, mainly made of a set of java interfaces. It is based on the Java Message Service model specification provided by Sun, of which it basically exposes the data model (a well defined set of message types), and exceptions.

3.3.1 Topic name space

The topic namespace is organized into a topic hierarchy : by delimiting nodes when naming a topic, a hierarchy of contents is created. The hierarchical name space use the same notation as fully qualified packages and classes: period delimited strings.

The official CMW hierarchy is logically partitioned in a controlled number of domains. Examples are :

· CMW.DEVICES

· CMW.ALARM_SYSTEM

· CMW.TIMING

· …

· CMW.ADMIN

· CMW.TMP
The CMW administrator can set and monitor security at domain level to assure that the scope of message permissions is appropriate for each user individually and as a member of one or more groups, within the scope of the official hierarchy rooted at CMW. An helper class cern.cmw.mom.util.TopicAdminHelper provides static fields to address the available domains.

3.3.1.1 Topic syntax and semantics

The following naming conventions apply to topic naming :

· Case sensitive — Topic names are case sensitive (like the Java language). For example the system recognizes TEMP and Temp as two different topic names.

· Spaces in names — Topic names can include the space character. For example, Power Converter. Spaces are treated just like any other character in the topic name.

· Empty string — A topic level can be an empty string. For example, A..C is a three-level topic name whose middle level is empty. The root node is not a content node, so just an empty string (“") is not a valid topic level for publication.

Four characters are reserved for special use :

· Delimit the hierarchical nodes with . (period).

· Template characters are * (asterisk), $ (dollarsign), or # (pound).

There are few constraints on a topic hierarchy. The system supports:

· Unlimited number of topics at any content node.

· Unlimited depth to the hierarchy (period-separated strings).

· Unlimited length for the name of any topic node, and any topic.

· Unlimited length for the complete string that defines a specific node.

· Unlimited number of topic hierarchies.
3.3.2 Publishing on topics

Publishing a message to a topic is a very simple operation. The interface cmw.mom.pubsub.Publisher provides all the methods to create different type of messages and to publish them to a given topic. A Publisher singleton instance is accessed through the factory class cmw.mom.pubsub.PubSubFactory. Factory and singleton design patterns have been used to provide independence from the actual implementation and controlled access to sole instance.

A typical example is shown in the following lines of code :

1 try {

2 MapMessage message = PubSubFactory.publisher().createMapMessage();

3 message.setString("aStringField", "Hello!");

4 PubSubFactory.publisher().publish("CMW.TMP.TEST", message);

5 } catch (Exception e) {}

6 …

7 PubSubFactory.publisher().close();

A Publisher singleton instance can be considered a rather heavy-wight object. Neverthless you can perform as many publications you may need in a thread-safe context referencing the same singleton instance. It is a good practice to take care of closing the instance when it is not needed anymore. Be aware that closing the instance causes the singleton to be closed and any subsequent access to the instance through any reference to it will cause a JMSException to be thrown. Calling again the factory method publisher() will cause a new Publisher singleton to be initialized.

3.3.3 Subscribing to topics

The topic hierarchy, in combination with template characters, enables multiple topic subscriptions, allowing you to:

· Subscribe to many topics quickly.

· Subscribe to topics whose complete name is unknown.

· Traverse topic structures in powerful ways.

· Avoid the use of message selectors, an inherently slow and recurring process.

Template characters (wildcards) are special characters in a sample string that are interpreted when evaluating a set of strings to form a list of qualified names. The . (period) delimiter is used together with the * (asterisk) and the # (pound) template characters when subscriptions are fulfilled. Using these characters avoids having to subscribe to multiple topics and offers benefits to clients who might need to see information or events across several domains. Client applications can only use template characters when subscribing to a set of topics or binding a set of topics to a message handler. Messages must be published on fully specified topic names. There are two template characters :

· * (asterisk) — Selects all topics at this content node.

· # (pound) — Selects all topics at this content node and its subordinate hierarchy.

The intent of the template characters is to allow a set of managed topics to exist in the message system in a way that lets subscribers choose broad subscription parameters that will include preferred topics and avoid irrelevant topics. There are some constraints:

· Unlike shell searches, you cannot qualify a selection, such as A.B*.C. You can use A.*.C. At a content level, a template character precludes using other template characters.

· The # symbol can only be used once. You can use A.#, or *.*.C.# or just #, but not #.B.#.

The system will deliver a message to more than one message handler if the message’s topic matches bindings from multiple handlers.When it is not known how deep the topic structure extends and all subordinate topics are of interest, appending .# extends the subscriptions to all topics at or below that level. Examples of multiple template characters in an expression are:

· Use #.ALARMS.* to subscribe to just the topics at ALARMS nodes however deep in the topic structure, but not messages at #.ALARMS.

· Use *.*.ALARMS.* to subscribe to just the topics at level 4 ALARMS nodes, but not those at *.*.ALARMS.

Subscriptions are performed through the class cmw.mom.pubsub.Subscriber. This is shown in the following lines of code :

1 try {

2 subscriptionToken = PubSubFactory.subscriber().subscribe(

3 "CMW.DEVICES.PowerConverter.PC1.Current",

4 listener,

5 selector);

6 ...

7 PubSubFactory.subscriber().unSubscribe(subToken);

8 PubSubFactory.subscriber().close();

9 }

10 catch (Exception e) { ... }

where listener is an instance of a class implementing the cern.cmw.mom.SubscriptionListener interface method onMessage(Message m) and selector is an optional string defining a message selector.

The same considerations made for the Publisher class apply for the Subscriber class. A singleton Subscriber object is instantiated through the factory method subscriber(). It can be considered heavy-weight object and should be closed when it is no longer needed. The same Subscriber singleton instance can be used for handling an unlimited number of independent subscriptions. Be aware that, as for the Publisher, closing the Subscriber instance causes the singleton to be closed and any subsequent access to the instance through any reference to it will cause a JMSException to be thrown. Calling again the factory method subscriber() will cause a new Subscriber singleton to be instantiated.

Note that messages are handled in a sequential order within the same subscription: it means that while a message is being processed, incoming messages are queued and then processed in FIFO order. Conversely, different subscriptions are served by different consuming threads : listeners code accessing shared resources must be synchronized.

3.3.3.1 Subscribing to devices

The Topic model can be adapted to the device/property model. This means that one can subscribe (publish) to device properties via the topic API. An helper class cern.cmw.mom.mapping.MappingSevice provides static methods to easy the mapping between the two models. The following example shows how this can be done :

1 import cern.cmw.mom.pubsub.*;

2 import cern.cmw.mom.mapping.*;

3 import cern.cmw.data.CmwData;

4 import javax.jms.*;

5 import javax.naming.NamingException;

6 public class PropertySubscription implements SubscriptionListener {

7 private Subscriber sub = null;

8 private long subscriptionToken = 0;

9 private static final String DEV_CLASS = "PowerConverter";

10 private static final String DEV_INSTANCE = "PC1";

11 private static final String DEV_PROPERTY = "Current";

12 private static final String CYCLE_SELECTOR = "Cycle_X";

13 public PropertySubscription() {

14 try {

15 sub = PubSubFactory.subscriber();

16 } catch (MOMException me) {

17 System.out.println("MOMException raised while instantiating a Subscriber");

18 me.printStackTrace();

19 }

20 subscribeToProperty();

21 }

22 public void subscribeToProperty() {

23 try {

24 String topic =

25
 MappingService.mapPropertyToTopic(DEV_CLASS, DEV_INSTANCE,

26

DEV_PROPERTY);

27 String cycle_selector =

28 MappingService.mapCycleSelectorToSelector(CYCLE_SELECTOR);

29 subscriptionToken = sub.subscribe(topic, this, cycle_selector);

30 } catch(JMSException je) {

31 je.printStackTrace();

32 } catch (NamingException ne) {

33 ne.printStackTrace();

34 } catch (MOMException me) {

35 me.printStackTrace();

36 }

37 }

38 public void onMessage(Message message) {

39 try {

40 CmwData data = MappingService.unwrapMessageToCmwData(message);

41 int value = data.extractInt("IntVal");

42 System.out.println("Got message : " + value);

43 sub.unSubscribe(subscriptionToken);

44 sub.close();

45 } catch(JMSException e) {

46 e.printStackTrace();

47 } catch (MOMException me) {

48 me.printStackTrace();

49 }

50 }

51 public static void main(String[] args) {

52 PropertySubscription propertySubscription1 = new PropertySubscription();

53 }

54 }

21-34 The topic name corresponding to the specified property is automatically generated, as well as the message selector for filtering the subscription on a specific cycle selector.

37-45
The incoming message is unwrapped and the CmwData extracted and decoded.

3.3.4 Working with different message types

The supported message types are those defined within the Java Message Service (JMS) standard specification.

JMS Messages are composed of the following parts:

· Header - All messages support the same set of header fields. Header fields contain values used by both clients and providers to identify and route messages.

· Properties - Each message contains a built-in facility for supporting application defined property values. Properties provide an efficient mechanism for supporting application defined message filtering.

· Body - JMS defines several types of message body which cover the majority of messaging styles currently in use.

JMS defines five types of message body:

· Stream - a stream of Java primitive values. It is filled and read sequentially.

· Map - a set of name-value pairs where names are Strings and values are Java primitive types. The entries can be accessed sequentially or randomly by name. The order of the entries is undefined.

· Text - a message containing a java.util.String. The inclusion of this message type is based on our presumption that XML will likely become a popular mechanism for representing content of all kinds including the content of JMS messages.

· Object - a message that contains a Serializable java object

· Bytes - a stream of uninterpreted bytes. This message type is for literally encoding a body to match an existing message format. In many cases, it will be possible to use one of the other, easier to use, body types instead.

A Message contains a built-in facility for supporting application defined property values. In effect, this provides a mechanism for adding application specific header fields to a message. Properties allow an application, via message selectors, to have a message filtering on its behalf using application-specific criteria. Property names must obey the rules for a message selector identifier. Property values can be boolean, byte, short, int, long, float, double, and String. The order of property values is not defined.

3.3.5 The message selector

A message selector allows a client to specify by message header the messages it's interested in. Only messages whose headers match the selector are delivered. Message selectors cannot reference message body values. A message selector matches a message when the selector evaluates to true when the message's header field and property values are substituted for their corresponding identifiers in the selector. A message selector is a String, whose syntax is based on a subset of the SQL92 conditional expression syntax. The order of evaluation of a message selector is from left to right within precedence level. Parenthesis can be used to change this order. Predefined selector literals and operator names are case insensitive. A selector can contain:

· Literals.

· Identifiers.

· Expressions.

· Whitespace is the same as that defined for Java: space, horizontal tab, form feed and line terminator.

· Standard bracketing () for ordering expression evaluation.

· Logical operators in precedence order: NOT, AND, OR .

· Comparison operators: =, >, >=, <, <=, <> (not equal).

· Arithmetic operators in precedence order.

· Arithmetic operations on a NULL value are not supported; if they are attempted, the complete selector is always false.

· Arithmetic operations must use Java numeric promotion.

· Arithmetic-expr1 [NOT] BETWEEN arithmetic-expr2 and arithmetic-expr3 comparison operator.

· Identifier [NOT] IN (string-literal1, string-literal2,...) comparison operator where identifer has a String or NULL value.

· Identifier [NOT] LIKE pattern-value [ESCAPE escape-character] comparison operator, where identifier has a String.

· Identifier IS NULL comparison operator tests for a null header field value, or a missing property value.

· Identifier IS NOT NULL comparison operator tests for the existence of a non null header field value or a property value.

These are examples of valid message selectors :

· "type = 'car' AND brand = 'bmw' AND color = 'blue' AND speed > 200 AND model LIKE '3%'"

· "(class IN ('PowerConverter' , 'Motor')) AND (instance IS NOT NULL) AND (property LIKE '%Alarm%')"

3.3.6 Working with notifications

Several mission-critical applications require a capability to be notified about special events such as the creation/destruction of a subscription. Some client might also be interested in knowing if a specific topic is beeing subscribed. A notification class hierarchy corrensponds to the different type of notifications published by the system on specific administrative topics. Interested clients can just subscribe to these administrative topics and get the corresponding notification messages.

Three different kinds of notification have been forseen so far :

· Consumer OPEN notification

· Consumer CLOSE notification

· Consumer IS ALIVE notification

These notifications basically allow a data producer to :

· Be aware of new subscriptions on sensitive topics in order to publish an 'initial status' message for the subscriber starting the subscription.

· Control the actual message publication flow on sensitive topics, enabling/disabling publication with respect to the presence/absence of interested subscribers.

In other words, this mechanism allows a client to break the decoupling between data producers and consumers and to have a finer control over the message flow.

3.3.6.1 A Client/Server application using notifications

A server process reads messages from the standard input. As soon as a client process subscribes to a predefined topic the server initializes the subscriber publishing the last message and enables the actual publishing of any message it gets from the stdin. As the client stops its subscription the server stops publishing anymore.

This is the code for the Server class :

55 import cern.cmw.mom.pubsub.*;

56 import javax.jms.*;

57 import javax.naming.NamingException;

58 public class Server implements SubscriptionListener {

59 private final static String TOPIC = "CMW.TMP";

60 private Publisher p = null;

61 private Subscriber s = null;

62 private long openSubscriptionToken = 0;

63 private long closeSubscriptionToken = 0;

64 private boolean publicationEnabled = false;

65 private String status = null;

66 public Server() {

67 try {

68 p = PubSubFactory.publisher();

69 s = PubSubFactory.subscriber();

70 } catch (MOMException me) {

71 System.out.println("MOMException raised instantiating pub&sub objects");

72 me.printStackTrace();

73 }

74 status = new String("INITIAL STATUS");

75 start();

76 }

77 private void start () {

78 String selector =

79 new String(NotificationHelper.TOPIC_PROPERTY+" = '"+TOPIC+"'");

80 try {

81 openSubscriptionToken = s.subscribe(

82 NotificationHelper.CarrierTopics[NotificationHelper.CONSUMER_OPEN_NOTIFICATION],

83 this,

84 selector);

85 closeSubscriptionToken = s.subscribe(

86 NotificationHelper.CarrierTopics[NotificationHelper.CONSUMER_CLOSE_NOTIFICATION],

87 this,

88 selector);

89 } catch (JMSException je) {

90 System.out.println("JMSException raised subscribing to notifications");

91 je.printStackTrace();

92 } catch (NamingException ne) {

93 System.out.println("NamingException raised subscribing to notifications");

94 ne.printStackTrace();

95 }

96 try {

97 java.io.BufferedReader in = new java.io.BufferedReader(

98 new java.io.InputStreamReader(System.in));

99 String str = null;

100 do {

101 System.out.println("Messaggio : ");

102 str = in.readLine();

103 status = str;

104 if (publicationEnabled) {

105 try {

106 TextMessage text = p.createTextMessage();

107 text.setText(str);

108 p.publish(TOPIC, text);

109 } catch (JMSException je) {

110 je.printStackTrace();

111 } catch (NamingException ne) {

112 ne.printStackTrace();

113 }

114 }

115 } while (!str.equals("bye"));

116 } catch (java.io.IOException ioe) {

117 System.out.println("IOException raised while reading from stdin");

118 }

119 try {

120 s.unSubscribe(openSubscriptionToken);

121 s.unSubscribe(closeSubscriptionToken);

122 } catch (JMSException je) {

123 System.out.println("JMSException raised unsubscribing from notifications");

124 je.printStackTrace();

125 }

126 s.close();

127 p.close();

128 }

129 public void onMessage(javax.jms.Message message) {

130 System.out.println("Got a notification");

131 try {

132 Notification n = NotificationHelper.messageToNotification(message);

133 int type = n.getType();

134 switch (type) {

135 case NotificationHelper.CONSUMER_OPEN_NOTIFICATION:

136 {

137 System.out.println("CONSUMER_OPEN_NOTIFICATION");

138 ConsumerOpenNotification on = (ConsumerOpenNotification)n;

139 String topicName = on.getTopicName();

140 String subscriptionId = on.getSubscriptionId();

141 javax.jms.TextMessage m = p.createTextMessage();

142 m.setText(status);

143 m.setStringProperty(NotificationHelper.SUBSCRIPTION_ID_PROPERTY,

144 consumerId);

145 try {

146 p.publish(topicName,m);

147 } catch (javax.naming.NamingException ne) {

148 System.out.println("NamingException raised publishing an init msg");

149 ne.printStackTrace();

150 }

151 System.out.println("Enabling publication...");

152 publicationEnabled = true;

153 break;

154 }

155 case NotificationHelper.CONSUMER_CLOSE_NOTIFICATION:

156 {

157 System.out.println("CONSUMER_CLOSE_NOTIFICATION");

158 System.out.println("Disabling publication...");

159 publicationEnabled = false;

160 break;

161 }

162 }

163 } catch(javax.jms.JMSException e) {

164 System.out.println("JMSException raised while handling a notification");

165 e.printStackTrace();

166 }

167 }

168 public static void main(String[] args) {

169 Server serevr = new Server();

170 }

171 }

72-90 The server subscribes to open/close subscription notifications. These are filtered on the TOPIC of interest by the use of a selector.

125-163 Notification messages are handled. An open subscription notification allows the server to publish an initialization message for the specific subscription. The actual message publication flow can be enabled/disabled accordingly with notifications.

And this is the code for the client class :

1 import cern.cmw.mom.pubsub.*;

2 import javax.jms.*;

3 import javax.naming.NamingException;

4 public class Client implements SubscriptionListener {

5 private final static String TOPIC = "CMW.TMP";

6 private Subscriber s = null;

7 private long subscriptionToken = 0;

8 public Client() {

9 try {

10 s = PubSubFactory.subscriber();

11 } catch (MOMException me) {

12 System.out.println("MOMException raised instantiating a Subscriber");

13 me.printStackTrace();

14 }

15 start();

16 }

17 public void start() {

18 try {

19 subscriptionToken = s.subscribe(TOPIC, this, null);

20 } catch (JMSException je) {

21 System.out.println("JMSException raised while subscribing to "+TOPIC);

22 je.printStackTrace();

23 } catch (NamingException je) {

24 System.out.println("JMSException raised while subscribing to "+TOPIC);

25 je.printStackTrace();

26 }

27 }

28 public void onMessage(Message message) {

29 if (!(message instanceof TextMessage))

30 return;

31 try {

32 TextMessage msg = (TextMessage)message;

33 System.out.println("Got message : " + msg.getText());

34 if (msg.getText().equals("bye")) {

35 System.out.println("Time to close!");

36 s.unSubscribe(subscriptionToken);

37 s.close();

38 }

39 } catch(JMSException je) {

40 System.out.println("JMSException raised processing message: "+message);

41 je.printStackTrace();

42 }

43 }

44 public static void main(String[] args) {

45 Client client = new Client();

46 }

47 }

3.3.7 Logging

Topic API uses log4j API, an Apache tool, for logging (http://jakarta.apache.org/log4j/docs/index.html). With log4j it is possible to enable logging at runtime without modifying the application binary. The log4j package is designed so that these statements can remain in shipped code without incurring a heavy performance cost. Logging behavior can be controlled by editing a configuration file, without touching the application binary.

The default configuration file enables logging at DEBUG level. The output is sent both to the standard output and to a rolling file mom.log. In order to change the default logging configuration, or if the client intends to use its own log4j configuration policy, client applications have to set the system property log4j.configuration to the appropriate log4j configuration file.

3.3.8 Configuration properties

Topic API makes use of a set of configuration system properties. Default values are defined in the global CMW configuration property file. Users can override them. Here follows the list of the configuration properties along with their default values :

- cmw.mom.retry=40

- cmw.mom.maxretry=10

Connection retry interval (seconds, >0, >30 to avoid unproper reconnection during broker shutdown) and max retry number.

- cmw.mom.ping=5

Ping interval for connection loss detection (seconds), >0.

- cmw.mom.username=cmw_usr

Username.

- cmw.mom.password=cmw_pwd

Password.

- cmw.mom.mbrokername=sljas1

- cmw.mom.mbrokerport=2506

Main broker name and port.

- cmw.mom.sbrokername=pcslux8

- cmw.mom.sbrokerport=2506

Spare broker name and port.

- cmw.mom.keepalive=0

Subscription keepalive interval (seconds), >=0, 0=no keepalive.

3.3.9 Libraries

In order to compile client applications, the following jar files are needed :

- mom.jar

The CMW public Topic API implementation.

- jms.jar

- jndi.jar

JMS and JNDI API.

Runtime libraries must also include the following jar files :

- client.jar

Progress SonicMQ JMS API implementation.

- gnu-regexp-1.0.6.jar

Regular expression parsing library.

- log4j.jar

Log4j library.

3.4 Using naming Services.

In this section we will concentrate on naming within the device property model. For the topic model no naming services are used and the namespace for topics is currently not restricted.

To use a device the user only has to know it’s device name and it’s properties. The use of naming service is implicit in the following code:

CmwDeviceBase pump = new CmwDeviceBase("PR50.VPS42");

Which creates a “handle” to the vacuum pump in the PS accelerator complex.

In almost all cases there in no need to know how the naming service works. The remaining of this chapter is destinated for users which want to know how it works but also for users which have to use devices from different domains simultaneusly or which want to create their own naming services.

3.4.1 How does it work.

If we take the above example, obviously the middleware has to find the server through which the pump can be manipulated. First the middleware will find the name of the server for this vacuum pump in the PS controls database. Then the server object will be resolved through the CORBA naming service. What may seem a long process in fact only takes a few milliseconds. The CORBA server object has only be resolved for the first device which is handled by this server.

The namespace of controls devices is separated between the PS and SL accelerators. PS users are defaulted to the PS controls database and SL users are defaulted to the SL-Equip database. The CORBA naming service is a common one.

All settings to configure the naming service are defined in the CMW configuration file. Chapter >>>> explains how to set the configuration file and the individual settings.

All naming services are used and configured through the DeviceDirectory class. DeviceDirectory is a singleton class which obtains device information from directory servers. It manages a cache of device information and can use multiple directory servers to obtain information from multiple sources (e.g. multiple database servers). This class also allows setting of additional directory servers such as FileDeviceDirectory which allows reading of additional device information from a file.

3.4.2 Using PS and SL Devices.

Two directory servers are currently operational: dirPS for the PS database and dirSLEquip for the SL-Equip directory. Be aware of the special format required for SL-Equip devices which is described in the next chapter.

Users in the PS and SL are defaulted to their respective databases. Users which want to enforce the database settings can do so with the configuration convenience functions:

import cmw.util.Config;

Config.setPSDefaults();

or

Config.setSLDefaults();

Some users may have to use PS and SL equipment simultaneously. DeviceDirectory has methods to add directory servers so that an SL can add the PS directory server user to resolve PS devices:

import cmw.dir.*;

DeviceDirectory dir = DeviceDirectory.getDeviceDirectory();

dir.addServer("dirPS");

In this example the CORBA directory server dirPS has been added and set as default. The default can be changed with:

directory.setDefaultServer("dirSLEquip");

It is also possible to seach several directories sequentially by changing the search policy. Users which have to recolve a big number of devices, and which are concerned by performance issues, can also use querying facilities of the DeviceDirectory to resolve many devices at once. Please refer to JavaDoc for a detailed description of methods.

3.5 Working with existing PS and SL DEVICES and with OPC servers

The server framework described before is intended to write new device adapters which confirm to the CMW device model. It was also used to provide access to existing PS and SL equipment and to industrial equipment. The CMW projest has developed three device adapters: The PS GM adapter to access all existing PS equipment, The OPC Adapter to access industrial equipment and the SL Equip Adapter to access all existing SL equipment (the latter currently in coding phase). In following we describe any limitations of the access, configuration issues etc for the three adapters.

3.5.1 Working with PS Devices.

3.5.2 Working with SL Equip devices.

There are important differencies between the device model of CMW and the equipment access of LEP and SPS implemented as “SL Equip”:

· CMW devices must have unique names but SL Equip devices do not.

· CMW has a model of device object with it’s state which can be acquired with get methods and the state can be changed with set methods. The SL Equip is based on the model of transaction or command to device which often require input data to acquire information from device.

· In CMW we assume that the device knows the type of data to be provided to the get method. In SL-Equip the type of the data is specified by the client

Because of these important differencies we had to define a mapping and a set of rules to access existing SL-Equip servers. They are described in the following sections. This functionality is currently being implemented as SL Equip Adapter. Users which are feeling that some important functionality is missing should contact the CMW team.

3.5.2.1.1 Naming.

SL-Equip names are a special case as the form Family_Member is often not unique. To make it unique the host name has to be appended to the name: Family_Member.host.

For instance device name SEM_30.gpsba1 is unique but SEM_30 is not. The first form with the host appended can always be used but the second form can only be used if it is unique.

3.5.2.1.2 Additional data for the get() method.

In SL Equip additional data can be specified in three ways: as “user options”, and as input data specified with the “X” two-way modes (XBR, XB etc.) and as input data in AQUIP() (arg, argdsc). In principle we support all three possibilities, with minor restrictions.

Users have to put the additional data as DataEntries in the Data object:

1. User options can be inserted either as ByteArray or as String and the Data Entry tag must be “SLEq_opt”.

2. Cycle identification must be inserted as an unsigned long and the Data Entry tag must be “SLEq_cycle.
3. User data for either “X” modes or for equip servers can be inserted as ByteArray, ShortArray or DoubleArray. The DataEntry tag must be SLEq_data_1 for the simple types. In case of composite types, SLEq_data_n will be the tag of the n-th component. No nesting is allowed. For example if argdsc for the MEQUIP() is “20c5s10d” then there must be an DataEntry tagged “SLEq_data_1” and it must contain a ByteArray with 20 bytes. Respectively DataEntry tagged “SLEq_data_2” must contain an array of 5 shorts and entry tagged “SLEq_data_3” must contain an array of 10 doubles. “32c1s30(1f1l)” describes a nested structure and is therefore not allowed. More conversions could be made available later.

4. The type of the user data must be described as DTM data description string. This description consists of a number describing the data size followed by one letter describing the data type: “c” for characters or bytes, “s” for shorts, “l” for longs and “d” for doubles. Complex data can be described as a sequence of such specifications as it has been explained above. This description string must be supplied in the DataEntry tagged “SLEq_type”

The older versions of Equip described data as “mode” and this is for instance required by MIL1553 library. The Equip Adapter will deduct the mode from the type description string by applying following rules:

· If the user data (“SLEq_data_1”) is not empty then the “X” mode (XB, XBI, XRI) will be used.

· “nd” (where n is the size) results in mode “RBR” (or “XBR”)

· “ns” results in mode “RBI” or “XBI”

· “nb” results in mode “RB” or “XB”

· “nc” results in mode “RS” or “XS”

· complex data description (like “20c5s10d”) results in mode “RB” or “XB”

3.5.3 Working with industrial OPC servers.

OPC (OLE for Process Pontrol) is a widely used standard to provide an uniform access to industrial fieldbuses, PLC’s etc. The CMW project developed an OPC Gateway (which is an OPC client) allowing to access any data available in an OPC server.

This gateway if fully generic i.e. it does not need any modifications to access a new OPC server. The only requirement is that the mapping between properties of devices and OPC items and the characteristics of access to items are defined in a SQL database. A ORACLE database is available as prototype and new definitions can be added to this database. The gateway has been succesfully tested with a number of OPC servers.

The OPC gateway is started on the same machine as the OPC server and can be accessed from anywhere in the network.

3.6 Using Configuration Services

Most middleware servers will need configuration files or configuration databases. In an ideal case every server should auto-configure itself, for instance to serve all devices which are available through a specific host. Although it is not really the task of the middleware to provide such facilities, CMW offers a simple database access service which allows database access on hosts which traditionally could not access databases (i.e. LynxOS Front-Ends).

This is a generic query service which allows to recuperate results of any database query as CmwData objects (see >>>>>). This service is for instance used to auto-configure the OPC gateway provided by CMW.

!!! to be finished

3.7 Configuration files and configuration parameters

Kris

3.8 Supported platforms

3.9 compiling and linking

Who ??

3.10 Current Limitations

3.11 solving problems

3.12 FAQ

The FAQ gained it’s prominence with mailing lists. It was customary to send periodically a list of frequently asked questions with answers so that newcomers do not “pollute” the list with questions which have beeen answered hundreds of times. By providing a FAQ we hope to protect ourselves from having to answer the same questions again and again.

A real FAQ is living and new items are constantly added. This list is just a snapshot – please check the live FAQ on the CMW home page.

3.12.1 General

Q: Which existing devices can be used with CMW

A: At the time of writing all PS devices and SPS targets (through OPC). SL-Equip devices will be accessible in May 2001.

3.12.2 Java API

4. reference section

From the expert’s viewpoint, describe each basic operation.

appendix a : error messages and recovery procedures
List all the errors messages.

appendix b : glossary
List all terms with specialised meanings.

appendix c : index (for manuals of 40 pages and more)List all importants terms.

Figure 3.23-1 - Controls middleware developers interface

� This title is a bookmark called “projectname”. If you want to add some characters or words to it, please write your new title, select it, call “bookmark” on the “Edit” menu, and add the bookmark “projectname”.

If you just want to delete or insert some characters, you should disregard this procedure.

� Each section that is highlighted in grey is a bookmark. That means that the information appears in several places in the document, and if you want to modify it, you don’t have to go to each place: just modify the first one (see A1) with the right bookmark name and update the others.

To update your project name and the different references (group, document number, issue...) on each table, or even the date in headers or tables, your reference numbers, and the table of contents, select the section and press “f9”.

If you want to update the whole document, choose “Select all” on the “Edit” menu and press “f9”.

If the “Error! Reference source not found” occurs, this means that you must update the section: select it and press “f9”.

� To add another “Change Record” table, select the whole table, go to “Copy” on the “Edit” menu, then go to the insert point and press “Paste” (also on the “Edit” menu).

�PAGE \# "'Page: '#'�'" �Page: 6��� Of course, the italic lines must not appear in your final document !!!

� To write your document, please use only the following styles: “Heading 3”, “Heading 4”, “Paragraph”, “Abc list”, “List bullet”, “Acronyms” (using TAB), “Normal” (for the tables). Select a section, then select a style (on the left top of the toolbar): Your section will be automatically formatted. You are free to use whatever tables, drawings and charts you want.

�PAGE \# "'Page: '#'�'" �Page: 61��� To fill this section, you need the “Insert Operation” on the “Insert” menu. For each new operation you want to add, move your cursor to the insert point, go to “Insert Operation” and the list of information required will appear automatically.

GENEVA, SWITZERLAND - June, 02
2

