

Project core team:

SL: Vito Baggiolini, Kris Kostro, Marc Vanden Eynden

PS: Franck di Maio, Alessandro Risso

Middleware Workshop

Motivation
Kris

Accelerator Device Model & Java API Franck

Object-Oriented Middlewares

◆ CORBA Kris

◆ DCOM Alessandro

Coffee break

Java Enterprise Beans and RMI

Vito

Message-Oriented Middlewares

MSMQ, SmartSockets, IBUS Marc, Vito

♦ OPC Vito

Selection criteria
 Marc

Slides of the workshop

http://hpslweb.cern.ch/pssl/middleware/middleware.html

Kris Kostro SL/CO

Why this workshop

Middleware team asked for more information

 Postgraduate course on Middleware at EPFL Lausanne 1, 2, 3 of March

 We do not consider ourselves experts in the subject we present

Middleware Motivation

- PS/SL Convergence project early 1998
 Asked for a Vision of the new controls infrastructure
- Currently used technology is 15 years old it's time to look for a new one
- Technology shift Java, WWW, CORBA, DCOM, OO tools & techniques
- Data exchange with LHC subsystems and experiments
- Pushed by SPS 2001 (SPS as injector to LHC) project

What is Middleware

Middleware is the Software Bus for distributed applications

- Goes beyond the client-server model
- Additional layer which allows to interact with server (or service) abstraction.
 - Distributed objects
 - message queues
 - Unified DB access
- Added value such as location service, reliability, authentication, transaction semantics

Are SL-Equip and PS-Equip Middlewares?

Offer location service

Based on standard RPC call

In SL-Equip standard for plugging-in servers with SVMQ

Middleware project launched by PS/SL convergence

To provide a software communication architecture and services allowing inter-object communication, mainly for the Accelerator Device Model

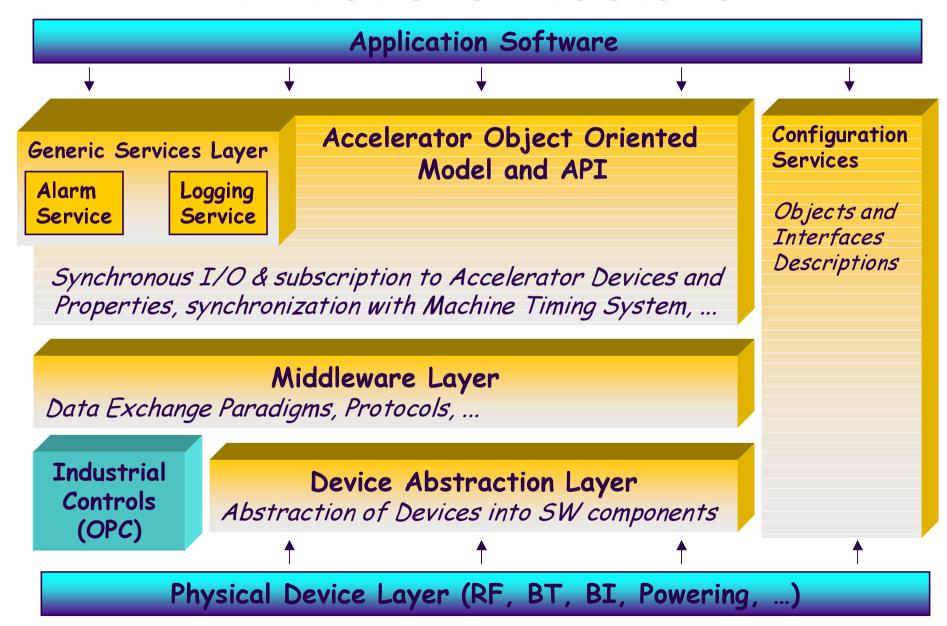
Scope

- Synchronous device I/O
- Asynchronous distribution of device properties (publishsubscribe)
- "plugging-in" of physical & virtual devices
- Generic services (logging, alarms)
- Interoperability with industrial systems

Project Phases

Phase I

- Requirement capture & analysis
- Evaluation and choice of middleware technology
- Definition and implementation of test cases.


Phase II

Final architecture specification, Design and implementation.

Phase III

 Integration of existing servers, Connecting existing equipment.

Initial architecture

Middleware Introduction

Kris Kostro SL/CO

What is Middleware

Middleware is the Software Bus for distributed applications

- Goes beyond the client-server model
- Additional layer which allows to interact with server (or service) abstraction.
- Added value such as location service, reliability, authentication, transaction semantics

Middleware Families

- Object Request Brokers (ORB)
 - Extend the object model to distributed case remote object encapsulates state, access via method calls
 - CORBA, Microsoft DCOM, Java RMI
- Message-Oriented Middlewares (MOM)
 - Mostly offer reliable messaging, some support multicasting
 - MSMQ, SmartSockets, IBUS

Middleware Facilities

- Basic facilities
 - How do you communicate
 - How do you describe the interfaces
 - How do you find servers and services
- Useful Services
 - Transactions
 - Security
 - Concurrency control

Middleware Facilities (2)

- Programming and deployment
 - Support for languages
 - Support for hardware platforms and interoperability
 - Support for Object-Oriented Model
 - Support for Components
 - Performance, scalability

Communication in ORB

- In OO middleware the basic method of communication is a synchronous method call
- Method call is like remote procedure call
- Fits well in the encapsulation principle
 - The remote object manages it's state
 - The state is only accessible through it's operations (methods)
- Subscription can be implemented with callbacks

Communication in MOM

- All communication is via messages
- Messages need guaranteed delivery
- There is normally a third party which can store messages
- MOM can be implemented in an ORB

Interface Description

- Describes allowed operations on objects
- Can include interface ID's
- Normally in an independent descriptive language (IDL)
- Used for stub generation and for introspection

Naming and location

- Finding an object using a symbolic name
- Referencing an object so that the operation can be called
- Needs standards and databases

Other services

- Transactions
 - Group a number of interactions together
 - All-or-nothing semantics (commit or roll-back)
- Security
 - Authentication of users
- Distributed Locking
 - Concurrency control and synchronization
 - Exclusive access to shared resources

Components

Component is a piece of software small enough to create and maintain, big enough to deploy and support and with standard interfaces for interoperability

- For programming in large
- For non-programmers and visual programming
- Builder support