
Java RMI andJava RMI and
Enterprise JavaBeansEnterprise JavaBeans

Vito Baggiolini SL/CO

What is RMIWhat is RMI
◆ Java Remote Method Invocation

◆ between objects in different Java Virtual Machines

◆ Mono-language
◆ Multi-platform
◆ 100% Java

RMI FeaturesRMI Features

◆ OO remote method call
◆ Pass Java objects as parameters

◆ Name lookup & binding (location service)
◆ Find and bind to remote objects

◆ Easy multi-threaded servers
◆ Remote object activation

◆ server objects occupy memory only when active

◆ Automatic distributed garbage collection
◆ Dynamic class loading over the net

Java Features used by RMIJava Features used by RMI
◆ Communication-level security

◆ Encryption and authentication (SSL)

◆ Introspection
◆ Explore interfaces at run-time

=> support for generic clients and servers

◆ Locking
◆ Enforces exclusive access to server methods

◆ Integration of legacy (JNI)
◆ Relatively easy for server-side C/C++ code
◆ Bulky for client-side C/C++ code

◆ Late binding (linking)

Importance of FeaturesImportance of Features

◆ Fully OO Remote Method Call
◆ Local and distributed programming very similar
◆ Allows late decisions on how to distribute application

◆ Passing objects as parameters
◆ Not only data, but also code
◆ No manual packaging/unpackaging

◆ Dynamic class loading + late binding
◆ No need to re-compile on changes
◆ Smooth and transparent upgrades

RMI code exampleRMI code example
public class Magnet extends UnicastRemoteObject
 implements MagnetI

 {
 public Magnet() {
 Naming.bind("//eanorth/magnet", this);
 }

 int current;
 public void setCurrent(int val) {

current = val;
 }
}

 public static void main(…) {

 MagnetI mag = (MagnetI)
 Naming.lookup("//eanorth/magnet");

 mag.setCurrent(300);

 }

S
er

ve
r

C
lie

n
t

Java vs. CORBAJava vs. CORBA

◆ CORBA: integration tool
◆ CORBA’s strength: language independent

◆ RMI: distributed programming tool
◆ RMI’s strength: language centric

◆ RMI + CORBA → RMI over IIOP
✔ Easy programming interface (RMI)
✔ Interoperability
✘ Restricted functionality

Java Centric vs.Java Centric vs.
Language IndependentLanguage Independent

Java centric
✔ Full Java functionality

everywhere
✘ More difficult to integrate

other languages

Language independent
✘ Lowest common

denominator
✔ Easy to integrate

languages

Related Java TechnologyRelated Java Technology

◆ JavaBeans
◆ Software components, enable visual programming

◆ JavaDoc
◆ Easy documentation on the Web

◆ Embedded Java
◆ Small memory footprint, 100% Java

◆ Compiled Java (unofficial)
◆ Easy programming, good performance

Enterprise JavaBeansEnterprise JavaBeans

What are Enterprise JavaBeans?What are Enterprise JavaBeans?

◆ Framework for Server Components...
◆ …with access to Middleware services

◆ 1. Goal: easy server development
◆ Developers concentrate on their application

◆ 2. Goal: portable server components
◆ Components can be used in any EJB Product

EJB Component ModelEJB Component Model

◆ Container (= Run-time Environment)

◆ Enterprise JavaBean (= your application)

Enterprise
JavaBean

Container

Appl-
specific

Client

Server

Enterprise
JavaBean

Container

MiddlewareMiddleware Access Access

◆ …transparently

“Middleware”

◆ Container
provides access
to middleware
services...

◆ EJBean can use
middleware
explicitly

◆ … through
standardized
Java API’s

Standardized Enterprise API’sStandardized Enterprise API’s

◆ Naming and Directory Service
◆ Transactions
◆ Message-oriented Middleware
◆ Remote Method Call
◆ Database Access

SummarySummary
◆ RMI

✔ Easy to use
✔ Truly OO
✔ Dynamic class loading and late binding
✔ Distributed garbage collection
✗ Integration of other languages less easy
✗ Performance, scalability (solved with Java 2.0?)
✗ Still in evolution

◆ EJB
✔ Easy to use
✔ 100% Java, portable
✗ Still in evolution
✗ Not much vendor support yet

